Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection.

نویسندگان

  • Monika Neupärtl
  • Christine Meyer
  • Isabell Woll
  • Florian Frohns
  • Ming Kang
  • James L Van Etten
  • Detlef Kramer
  • Brigitte Hertel
  • Anna Moroni
  • Gerhard Thiel
چکیده

Infection of Chlorella NC64A cells by PBCV-1 produces a rapid depolarization of the host probably by incorporation of a viral-encoded K(+) channel (Kcv) into the host membrane. To examine the effect of an elevated conductance, we monitored the virus-stimulated efflux of K(+) from the chlorella cells. The results indicate that all 8 chlorella viruses tested evoked a host specific K(+) efflux with a concomitant decrease in the intracellular K(+). This K(+) efflux is partially reduced by blockers of the Kcv channel. Qualitatively these results support the hypothesis that depolarization and K(+) efflux are at least partially mediated by Kcv. The virus-triggered K(+) efflux occurs in the same time frame as host cell wall degradation and ejection of viral DNA. Therefore, it is reasonable to postulate that loss of K(+) and associated water fluxes from the host lower the pressure barrier to aid ejection of DNA from the virus particles into the host.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potassium ion channels of Chlorella viruses cause rapid depolarization of host cells during infection.

Previous studies have established that chlorella viruses encode K(+) channels with different structural and functional properties. In the current study, we exploit the different sensitivities of these channels to Cs(+) to determine if the membrane depolarization observed during virus infection is caused by the activities of these channels. Infection of Chlorella NC64A with four viruses caused r...

متن کامل

Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes.

Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium...

متن کامل

Mast Cells Kinetics during Experimental Schistosomiasis mansoni in Mice

Increased number of mast cells at the site of infection is widely regarded as important host defense against parasites. The kinetics of mucosal mast cells and connective tissue mast cells responses were studied in the intestines of 68 female CFLP mice infected with 100 Schistosoma mansoni cercariae. The number of mucosal mast cells and the connective tissue mast cells increased from week 3 and ...

متن کامل

Evaluation of higher plant virus resistance genes in the green alga, Chlorella variabilis NC64A, during the early phase of infection with Paramecium bursaria chlorella virus-1.

With growing industrial interest in algae plus their critical roles in aquatic systems, the need to understand the effects of algal pathogens is increasing. We examined a model algal host-virus system, Chlorella variabilis NC64A and virus, PBCV-1. C. variabilis encodes 375 homologs to genes involved in RNA silencing and in response to virus infection in higher plants. Illumina RNA-Seq data show...

متن کامل

Neuraminidase gene sequence analysis of avian influenza H9N2 viruses isolated from Iran

Influenza A viruses possesses two virion surface glycoproteins including haemagglutinin (HA) and neuraminidase (NA). The NA plays an important role in viral replication and promotes virus release from infected cells and facilitates virus spread throughout the body. To find out any genomic changes that might be occurred on NA gene of avian influenza circulating viruses, we have genetically analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Virology

دوره 372 2  شماره 

صفحات  -

تاریخ انتشار 2008